Ini akan menghapus halaman "The Verge Stated It's Technologically Impressive"
. Harap dipastikan.
Announced in 2016, Gym is an open-source Python library designed to facilitate the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research, making released research more easily reproducible [24] [144] while supplying users with a simple interface for communicating with these environments. In 2022, brand-new developments of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support knowing (RL) research on computer game [147] utilizing RL algorithms and research study generalization. Prior RL research study focused mainly on optimizing agents to solve single jobs. Gym Retro provides the capability to generalize between video games with comparable principles but various appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially lack knowledge of how to even stroll, however are given the objectives of discovering to move and to push the opposing representative out of the ring. [148] Through this adversarial learning procedure, the agents find out how to adapt to changing conditions. When a representative is then gotten rid of from this virtual environment and positioned in a brand-new virtual environment with high winds, the agent braces to remain upright, recommending it had actually learned how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competition between agents might create an intelligence "arms race" that could increase an agent's ability to operate even outside the context of the competition. [148]
OpenAI 5
OpenAI Five is a group of five OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that discover to play against human players at a high ability level totally through trial-and-error algorithms. Before ending up being a team of 5, the first public presentation occurred at The International 2017, the yearly best championship competition for the video game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman that the bot had actually discovered by playing against itself for two weeks of actual time, and that the learning software application was an action in the direction of developing software that can handle complex tasks like a surgeon. [152] [153] The system utilizes a type of reinforcement knowing, as the bots find out gradually by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an enemy and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a full team of 5, and they had the ability to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against expert players, but ended up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champions of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public appearance came later that month, where they played in 42,729 overall video games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot player reveals the difficulties of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has demonstrated using deep support knowing (DRL) agents to attain superhuman competence in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl utilizes device discovering to train a Shadow Hand, a human-like robotic hand, to control physical objects. [167] It finds out entirely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI took on the things orientation issue by using domain randomization, a simulation approach which exposes the student to a range of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having motion tracking video cameras, likewise has RGB video cameras to allow the robotic to control an arbitrary item by seeing it. In 2018, OpenAI showed that the system had the ability to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could resolve a Rubik's Cube. The robotic had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to model. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of generating progressively harder environments. ADR differs from manual domain randomization by not needing a human to define randomization ranges. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI models established by OpenAI" to let developers contact it for "any English language AI job". [170] [171]
Text generation
The company has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")
The original paper on generative pre-training of a transformer-based language model was written by Alec Radford and his associates, and published in preprint on OpenAI's website on June 11, 2018. [173] It showed how a generative model of language could obtain world knowledge and process long-range dependences by pre-training on a diverse corpus with long stretches of contiguous text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the successor to OpenAI's initial GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with only limited demonstrative versions at first launched to the public. The full version of GPT-2 was not instantly released due to issue about possible abuse, consisting of applications for writing phony news. [174] Some professionals revealed uncertainty that GPT-2 posed a considerable hazard.
In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to spot "neural fake news". [175] Other researchers, such as Jeremy Howard, alerted of "the technology to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be difficult to filter". [176] In November 2019, OpenAI released the total version of the GPT-2 language design. [177] Several websites host interactive demonstrations of various instances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue not being watched language models to be general-purpose students, highlighted by GPT-2 attaining modern accuracy and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not further trained on any task-specific input-output examples).
The corpus it was trained on, setiathome.berkeley.edu called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain problems encoding vocabulary with word tokens by using byte pair encoding. This allows representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI stated that the full variation of GPT-3 contained 175 billion criteria, [184] 2 orders of magnitude larger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 designs with as few as 125 million specifications were likewise trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" jobs and could generalize the purpose of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer knowing between English and Romanian, and between English and German. [184]
GPT-3 considerably improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or coming across the basic capability constraints of predictive language models. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not immediately released to the public for concerns of possible abuse, although OpenAI prepared to allow gain access to through a paid cloud API after a two-month free private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed solely to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has actually furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can produce working code in over a lots programs languages, most successfully in Python. [192]
Several problems with problems, style defects and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has been implicated of emitting copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would terminate assistance for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar examination with a score around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, evaluate or generate as much as 25,000 words of text, and write code in all major programming languages. [200]
Observers reported that the iteration of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based version, with the caution that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is also efficient in taking images as input on ChatGPT. [202] OpenAI has decreased to expose various technical details and statistics about GPT-4, such as the exact size of the model. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and launched GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained state-of-the-art results in voice, multilingual, and vision criteria, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially beneficial for enterprises, start-ups and designers seeking to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI launched the o1-preview and o1-mini models, which have actually been designed to take more time to think of their actions, resulting in greater accuracy. These designs are especially effective in science, coding, and thinking tasks, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3
On December 20, 2024, OpenAI unveiled o3, the follower of the o1 reasoning design. OpenAI likewise revealed o3-mini, a lighter and much faster version of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the opportunity to obtain early access to these models. [214] The design is called o3 instead of o2 to prevent confusion with telecommunications services supplier O2. [215]
Deep research study
Deep research study is an agent established by OpenAI, unveiled on February 2, 2025. It leverages the capabilities of OpenAI's o3 design to carry out extensive web surfing, information analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools enabled, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image classification
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to evaluate the semantic similarity in between text and images. It can significantly be used for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer model that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather handbag shaped like a pentagon" or "an isometric view of an unfortunate capybara") and create corresponding images. It can produce images of reasonable objects ("a stained-glass window with an image of a blue strawberry") in addition to items that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI revealed DALL-E 2, an updated version of the model with more realistic results. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a new simple system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI announced DALL-E 3, a more effective design better able to create images from intricate descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was launched to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video
Sora
Sora is a text-to-video model that can create videos based on short detailed triggers [223] as well as extend existing videos forwards or in reverse in time. [224] It can generate videos with resolution up to 1920x1080 or 1080x1920. The optimum length of produced videos is unknown.
Sora's advancement group named it after the Japanese word for "sky", to represent its "endless creative potential". [223] Sora's innovation is an adaptation of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system using publicly-available videos as well as copyrighted videos accredited for that purpose, but did not expose the number or the exact sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, stating that it could produce videos up to one minute long. It likewise shared a technical report highlighting the approaches used to train the model, and the design's abilities. [225] It acknowledged some of its imperfections, including struggles mimicing intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "excellent", but kept in mind that they need to have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, notable entertainment-industry figures have shown substantial interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry revealed his awe at the technology's ability to generate sensible video from text descriptions, citing its potential to change storytelling and content production. He said that his excitement about Sora's possibilities was so strong that he had decided to pause strategies for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of diverse audio and is also a multi-task design that can perform multilingual speech acknowledgment as well as speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can create tunes with 10 instruments in 15 styles. According to The Verge, a song produced by MuseNet tends to begin fairly but then fall under mayhem the longer it plays. [230] [231] In popular culture, initial applications of this tool were utilized as early as 2020 for the web mental thriller Ben Drowned to produce music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs tune samples. OpenAI specified the songs "show regional musical coherence [and] follow traditional chord patterns" but acknowledged that the songs do not have "familiar bigger musical structures such as choruses that repeat" and that "there is a significant space" in between Jukebox and human-generated music. The Verge stated "It's highly remarkable, even if the outcomes seem like mushy versions of tunes that may feel familiar", while Business Insider mentioned "remarkably, some of the resulting tunes are catchy and sound legitimate". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches machines to discuss toy problems in front of a human judge. The function is to research whether such a method may assist in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and neuron of eight neural network models which are frequently studied in interpretability. [240] Microscope was created to examine the functions that form inside these neural networks easily. The models consisted of are AlexNet, VGG-19, various versions of Inception, and various variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is a synthetic intelligence tool constructed on top of GPT-3 that offers a conversational interface that allows users to ask questions in natural language. The system then responds with a response within seconds.
Ini akan menghapus halaman "The Verge Stated It's Technologically Impressive"
. Harap dipastikan.